
Physica D (2007), doi:10.1016/j.physd.2007.09.020

Variational formulation of the motion of an ideal fluid on the basis of gauge principle
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On the basis of gauge principle in the field theory, a new variational formulation is presented for
flows of an ideal fluid. The fluid is defined thermodynamically by mass density and entropy density,
and its flow fields are characterized by symmetries of translation and rotation. A structure of
rotation symmetry is equipped with a Lagrangian ΛA including vorticity, in addition to Lagrangians
of translation symmetry. From the action principle, Euler’s equation of motion is derived. In
addition, the equations of continuity and entropy are derived from the variations. Equations of
conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate �. It
is shown that, with the translation symmetry alone, there is freedom in the transformation between
the Lagrangian �-space and Eulerian �-space. The Lagrangian ΛA provides non-trivial topology
of vorticity field and yields a source term of the helicity. The vorticity equation is derived as an
equation of the gauge field. Present formulation provides a basis on which the transformation
between the � space and the � space is determined uniquely.
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I. INTRODUCTION

In the historical paper ’General laws of the motion of
fluids’ [1], Leonhard Euler verified that his equation of
motion can describe rotational flows. The same theme is
investigated in this paper under modern view. Fluid me-
chanics is understood to be a field theory in Newtonian
mechanics that has Galilean symmetry. It is covariant
under transformations of the Galilei group. The gauge
principle ([19], [20], [21]) requires a physical system under
investigation to have a symmetry, i.e. a gauge invariance
with respect to a certain group of transformations. Fol-
lowing this principle, the gauge symmetry of flow fields
is studied in [2] and [3] with respect to both translational
and rotational transformations. The formulation started
from a Galilei-invariant Lagrangian of a system of point
masses which is known to have global gauge symmetries
with respect to both translation and rotation [4]. It was
then extended to flows of a fluid, a continuous material
characterized with mass density and entropy density. In
addition to the global symmetry, local gauge invariance
of a Lagrangian is required for such a continuous field.
Symmetries imply conservation laws. Equations of con-
served currents are deduced as the Noether theorem.

Thus, the convective derivative of fluid mechanics, i.e.
the Lagrange derivative, is identified as the covariant
derivative, which is a building block in the framework
of gauge theory. Based on this, appropriate Lagrangians
are defined for motion of an ideal fluid. Euler’s equation
of motion is derived from the action principle. In most
traditional formulations, the continuity equation and en-
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tropy equation are given as constraints for the variations,
while in this new formulation those equations were de-
rived from the action principle. In the previous study
([5], [6]) of rotational symmetry of the velocity field v(x),
it is found that the vorticity ω = ∇×v is the gauge field
associated with the rotational symmetry of velocity.

A new structure of the rotational symmetry was given
in [3] by the following Lagrangian:

ΛA = −
∫
M

〈LWA, ω 〉d3x,

where A is a vector potential and LWA = ∂tA+vk∂kA+
Ak∇vk. This is derived from a representation character-
istic of a topological term known in the gauge theory. This
yields non-vanishing rotational component of the veloc-
ity field, and provides a source term of helicity. This
is closely related to the Chern-Simons term, describing
non-trivial topology of vorticity field, i.e. mutual linking
of vorticity lines. The vorticity equation is derived as an
equation for the gauge field.

With regard to the variational formulation of fluid
flows, the papers [7] and [8] are among the earliest to have
influenced current formulations. Their variations are car-
ried out in two ways: i.e. a Lagrangian approach and
an Eulerian approach. In both approaches, the equation
of continuity and the condition of isentropy are added
as constraint conditions on the variations by means of
Lagrange multipliers. The Lagrangian approach is also
taken by [9]. In this relativistic formulation those equa-
tion are derived from the equations of current conser-
vation. Several action principles to describe relativistic
fluid dynamics have appeared in the past (see [9, §4.2]
for some list of them).

In the Lagrangian approach, the Euler-Lagrange equa-
tion results in an equation equivalent to Euler’s equation
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of motion in which the acceleration term is represented as
the second time derivative of position coordinates of the
Lagrangian representation. In this formulation, however,
there is a certain degree of freedom in the relation be-
tween the Lagrangian particle coordinates and Eulerian
space coordinates. Namely, the relation between them
is determined only up to an unknown rotation. In the
second approach referred to as the Eulerian description,
the action principle of an ideal fluid results in potential
flows with vanishing helicity, if the fluid is homentropic
[2]. However, as noted in the beginning, it should be pos-
sible to have rotational flows even in such a homentropic
fluid. Gauge theory for fluid flows provides a crucial key
to resolve these issues. It was also shown in [2] that a
general solution in the translational symmetry alone is
equivalent to the classical Clebsch solution [10]. A new
formulation on the basis of the Clebsch parametrization
is carried out in [11] and [12] aiming at its extension to
supersymmetric and non-Abelian fluid mechanics.

It is interesting to note the gauge invariances known
in the theory of electromagnetism and fluid flows. There
is an invariance under a gauge transformation of electro-
magnetic potentials consisting of a scalar potential φ and
a vector potential A. An analogous invariance is pointed
out in [2] for a gauge transformation of a velocity po-
tential φ of irrotational flows of an ideal fluid, where the
velocity is represented as v = ∇φ. It is shown in [7]
(cited in [3]) that gauge invariance is not restricted to
the potential flows, but also there is known an invariance
in the rotational flow of Clebsch representation.

II. EQUATIONS IN �-SPACE

A. Lagrangian

Let us consider a variational formulation with a La-
grangian represented with the particle coordinate a =
(a1, a2, a3) = (a, b, c) (i.e. Lagrangian coordinates). In-
dependent variables are denoted with aμ where μ or greek
letter suffix take = 0, 1, 2, 3 with a0 the time variable
written also as τ (= t): aμ = (τ, a1, a2, a3). Correspond-
ing physical space coordinate x = (x, y, z) (Eulerian co-
ordinates) are written also as xμ = (t, x1, x2, x3). The
letter τ is used (instead of t) in combination with the par-
ticle coordinates ak. Physical space position of a particle
a is expressed by Xk(aμ) = Xk(τ,a), or Xk = (X,Y, Z).
Its velocity is given by vk = ∂τX

k, also written as Xk
τ .

The Lagrangian coordinates (a, b, c) are defined such
that an infinitsimal three-element d3a = da db dc denotes
a mass element dm of an infinitesimal volume d3x =
dxdy dz of the x-space. The mass elelment dm should
be invariant during the motion:

∂τ (dm) ≡ ∂τ (d3a) = 0 . (1)

The mass-density ρ is defined by the equation d3a =
ρ d3x. With using a Jacobian determinant J of the

transformation Xk = Xk(al) from a-space to X-space
(k, l = 1, 2, 3), we have

ρ =
1
J
, J =

∂(X1, X2, X3)
∂(a1, a2, a3)

=
∂(X,Y, Z)
∂(a, b, c)

. (2)

In an ideal fluid, there is no dissipation of kinetic energy
into heat, by definition. According to thermodynamics
for the entropy s (per unit mass) and temperature T , we
have Tδs = 0 if there is no heat production. Namely the
entropy s does not depend on τ . Then, the change of
internal energy ε (per unit mass) is related to the density
change δρ alone by

δε = (δε)s =
p

ρ2
δρ,

( ∂ε
∂ρ

)
s

=
p

ρ2
, δh =

1
ρ
δp, (3)

where p is the fluid pressure, and h = ε+p/ρ the enthalpy,
and ( · )s denotes s being fixed. However, the entropy s
may not be uniform and may depend on a by initial
condition. Hence, s = s(a), or equivqalently,

∂τ s = 0 . (4)

Total Lagrangian is defined by

ΛT =
∫
Ma

1
2
Xk
τ X

k
τ d3a −

∫
Ma

ε(ρ, s) d3a , (5)

[3], where Ma is a space of fluid under investigation, and
Xk
τ = Xk

0 = vk is the velocity. The internal energy ε(ρ, s)
of the second term depends on ρ (which in turn depends
on Xk

l = ∂Xk/∂al by (2)) and the entropy s(a).
An action I is defined by the integral: I =

∫
ΛTdτ :

I =
∫

L(Xk
μ) d4a, d4a = dτ d3a, (6)

L(Xk
μ) = 1

2
Xk

0 X
k
0 − ε(Xk

l , a
k). (7)

B. Noether’s theorem

Euler-Lagrange equation associated with the La-
grangian (7) is given by

∂

∂aμ

( ∂L

∂Xk
μ

)
− ∂L

∂Xk
= ∂μ

( ∂L

∂Xk
μ

)
− ∂L

∂Xk
= 0. (8)

Energy-momentum tensor T νμ is defined by

T νμ ≡ Xk
μ

( ∂L

∂Xk
ν

)
− L δνμ , (9)

[7], where k = 1, 2, 3. As long as (8) is satisfied to-
gether with an assumption of τ -independence of L (i.e.
∂τL = 0), it can be verified [3] that we have a conserva-
tion equation ∂νT νμ = 0 (where ∂μ = ∂/∂aμ). This is the
Noether theorem ([13], [19]).

For μ �= 0 (xμ = α), the conservation law ∂νT
ν
μ = 0

reduces to the momentum equaitons:

∂τVα + ∂α F = 0 (Vα ≡ XαXτ + YαYτ + ZαZτ ), (10)
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[7], where F = − 1
2
v2 + h. Two other equations are ob-

tained with α replaced by cyclic permutaion of (a, b, c).
Integrating this with respect to τ between 0 and t, we
find the Weber’s transformation [14, Art.15]:

Vα(τ) ≡ XαXτ + YαYτ + ZαZτ = Vα(0) − ∂αχ, (11)

χ =
∫ t

0

F dτ =
∫ t

0

(− 1
2
v2 + h)dτ.

The Vα of (10) is a transformed velocity in the a-space
(Sec.VA). Its time evolution is given by (11) for a given
initial values of Vα(0,a) and h(0,a) at a = x.

With μ = 0, we have the energy equation:

∂τH + ∂a

[
p
∂(X,Y, Z)
∂(τ, b, c)

]
+ ∂b

[
p
∂(X,Y, Z)
∂(a, τ, c)

]

+ ∂c

[
p
∂(X,Y, Z)
∂(a, b, τ)

]
= 0. (12)

where H = 1
2
v2 + ε. The equation (10) reduces to the

equation for the acceleration Aα(τ,a):

Aα ≡ XαXττ + YαYττ + ZαZττ = −1
ρ
∂αp, (13)

which is known as the Lagrangian form of equation of
motion [14, Art.13]. This can be transformed to

Xττ = −1
ρ
∂x p, ∂xp =

∂α

∂x

∂p

∂α
(14)

[3]. Since Xττ is the x-accceleration of the particle a,
this is the form equivalent to the x-component of Euler’s
equation of motion (25). The y and z components can
be obtained analogously.

C. Arbitrariness in the transformation

There is an arbitrariness in the transformation from
the a-space to the x-space with respect to the equa-
tion (13). Its middle-side expression is a form of scalar
product of two vectors in the x-space: the particle
accelerataion (Xττ , Yττ , Zττ ) and the direction vector
(Xα, Yα, Zα) of the α-axis in the a-space.

Putting it in a different way, the equation (13) is in-
variant with respect to orthogonal rotational transforma-
tions of a displacement vector ΔX = (ΔX,ΔY,ΔZ) of
a particle in the x-space. In fact, suppose that a vector
ΔX satisfies the equation (13). Then, another vector
ΔX = R ΔX obtained by an orthogonal transformation
R satisfies the same equation, since any orthogonal ma-
trix satisfies RRT = I (unit mtrix) where RT denotes
the transposed matrix of R. So that the vector ΔX is
not uniquely determined. The same freedom can be said
to the velocity Vα(τ,a) of (11) as well.

These imply that a certain machinery must be
equipped in order to fix this arbitrariness within the
framework of rotational symmetry. This will be consid-
ered later. Note that the density ρ is not changed by the
orthogonal transformation.

III. EQUATIONS IN �-SPACE

A. Action in Eulerian representation

Eulerian description is represented by the indepen-
dent variables (t, x, y, z). Local gauge symmetries of fluid
flows are investigated in detail in [2], [3]. The time deriva-
tive ∂τ is equivalent to the convective derivative Dt:

∂τ = Dt, Dt ≡ ∂t+u∂x+v∂y+w∂z = ∂t+v ·∇ . (15)

The operator Dt is verified to be gauge-invariant. The
velocity field v(x, t) is defined by the particle velocity:

v(x, t) = ∂τX = Dtx. (16)

The acceleration field A(x, t) is also defined by

A(x, t) = ∂ 2
τ X = Dtv = (∂t + vk∂k)v. (17)

As noted previously, the mass d3a(a) and the entropy
s = s(a) satisfy (1) and (4). In view of these properties,
we can define the following two Lagrangians:

Lφ = −
∫
M

∂τφd3a, Lψ = −
∫
M

s ∂τψ d3a, (18)

where φ(a, τ) and ψ(a, τ) are scalar fields associated with
mass and entropy, respectively. By adding Lφ and Lψ to
ΛT of (5), the total Lagrangian is given by

Λ ∗
T = ΛT −

∫
∂τφ d3a −

∫
s ∂τψ d3a. (19)

The action is defined by I =
∫ τ2
τ1

Λ ∗
T dτ , where the inte-

gral Iφ =
∫

dτ
∫
∂τφd3a can be integrated with respect

to τ and expressed as
∫

[φ]d3a, where [φ] = φ|τ2 − φ|τ1 is
the difference of φ at the end times τ2 and τ1 and hence
independent of τ ∈ (τ1, τ2). Likewise, the last integral
can be expressed as Iψ =

∫
[ψ]s d3a, because s is inde-

pendent of τ . This means that the gauge potentials φ
and ψ do not appear in the equation of motion obtained
through variations of the action I for τ ∈ (τ1, τ2).

However, it becomes soon clear that these are non-
trivial in the expressions of the x-space, because they
are rewritten as Lφ = − ∫

M
ρDtφd3x, and Lψ =

− ∫
M ρsDtψ d3x by using the relations d3a = ρ d3x and

∂τ = Dt.
In the x-space, the total Lagrangian can be written as

Λ ∗
T =

∫
M

L(v, ρ, s, φ, ψ) d3x, where

L ≡ 1
2
ρ vkvk − ρε(ρ, s) − ρDtφ− ρsDtψ (20)

[22]. This is proposed as a possible form of Lagrangian in
the x-space (but an additional term will be added later).
The action is defined by I =

∫ L(v, ρ, s, φ, ψ) d4x, where
d4x = dt d3x. However, the action principle results in the
potential flow represented by v = grad(φ+s0ψ) when the
fluid has a uniform entropy s0 (see [2]).
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B. Outcomes of variations

We require invariance of the action I with respect to
variantions. First, consider the following infinitesimal
transformation: x′(x, t) = x + ξ(x, t). The volume ele-
ment d3x is changed to d3x′ = (1 + ∂kξ

k)d3x, up to the
first order terms. Hence the variation of volume is given
by Δ(d3x) = ∂kξ

k d3x, while the variations of density,
velocity and entropy are Δρ = −ρ ∂kξk, Δv = Dtξ, and
Δs = 0. Under these together with (1) and (4) (with
keeping φ and ψ fixed), the variation of I is given by

ΔI =
∫

d4x
[ ∂L
∂v

Δv +
∂L

∂ρ
Δρ+

∂L

∂s
Δs+ L∂kξ

k
]
.

This is required to vanish for arbitrary variation of ξk,
which results in the Euler-Lagrange equation:

∂

∂t

( ∂L
∂vk

)
+

∂

∂xl
(
vl
∂L

∂vk
)

+
∂

∂xk
(
L− ρ

∂L

∂ρ

)
= 0. (21)

Similarly, invariance of I with respect to arbitrary vari-
ations of φ and ψ (denoted by Δφ and Δψ) leads to

Δφ : ∂tρ+ ∇ · (ρv) = 0 (continuity equation), (22)
Δψ : ∂t(ρs) + ∇ · (ρsv) = 0 . (23)

C. Noether’s theorem in Eulerian representation

Associated with (21), one can define the momentum
density mk and momentum-flux tensor M l

k by

mk =
∂L

∂vk
, M l

k = vl
∂L

∂vk
+

(
L− ρ

∂L

∂ρ

)
δlk . (24)

From (7), we obtain mk = ρvk and M l
k = ρvkv

l + p δlk,
where vk = vk in the present Eucledian space. The equa-
tion (21) can be written in the form of momentum con-
servation, ∂t

(
ρvk

)
+ ∂l

(
ρvlvk

)
+ ∂kp = 0 (∂k = ∂/∂xk).

Using (22), this equation can be reduced to the following
Euler’s equation of motion:

∂tv
k + (vl∂l)vk = −1

ρ
∂k p (= −∂k h). (25)

The equation (14) is equivalent to this equation.
The energy equation (12) can be transformed to the

following equation of energy conservation:

∂t
[
ρ( 1

2
v2 + ε)

]
+ ∂k

[
ρvk ( 1

2
v2 + h)

]
= 0.

IV. ROTATION SYMMETRY

A topological structure of vorticity field is now consid-
ered with respect to the rotational symmetry. Related
gauge group is the rotation group SO(3). An infinitesi-
mal rotation is described by the Lie algebra so(3) of three
dimensions, which is non-Abelian.

From the study of the rotational gauge transformation
[3], it is found that the covariant derivative ∇t, velocity
v and accerelation A are represented as

∇t = ∂t + (v · ∇), (26)
v = ∇tx = (∂t + (v · ∇))x, (27)
A = ∇tv = ∂tv + (v · ∇)v (28)

∇tv = ∂tv + grad( 1
2
v2) + ω × v. (29)

It is verified that the last expression of ∇tv = ∂tv +
∇( 1

2
v2) + ω × v not only satisfies the rotational gauge-

invariance, but also expresses that ω is the gauge field
of the rotational symmetry. In addition, it satisfies the
covariance requirement with respect to Galilean trans-
formation from one reference frame (t, x, v) to another
(t∗, x∗, v∗) moving with a uniform relative velocity U ,
where t∗ = t, x∗ = x−U t and v∗ = v −U . Namely, we
have the covariance ∇tv = (∇tv)∗.

V. LAGRANGIAN ASSOCIATED WITH
ROTATION SYMMETRY

Associated with the rotation symmetry, an additional
Lagrangian is to be defined according to the gauge prin-
ciple. It is important to observe from Sec.III A that, in
the Lagrangian (19), the integrands of the last two in-
tegrals are of the form ∂τ ( · ). The action is defined by
I =

∫ ∫
[ΛT + ∂τ ( · )] dτd3a. This property is regarded

as the simplest representation of topology in the gauge
theory ([16] ∼ [18], [19]). In the context of rotational
flows, it is known that the helicity (or Hopf invariant,
[15]) describes non-trivial topology of vorticity field, i.e.
mutual linking of vorticity lines. This is closely related
with the Chern-Simons term (without third-order term)
in the gauge theory. This term lives in one dimension
lower than the original four space-time (xμ) of the action
I because a topological term in the action is expressed
in a form of total divergence (∂μFμ) and characterizes
topologically non-trivial structures of the gauge field.

However, we learn here from the formulation of
Sec.III A and look for a τ -independent field directly.

A. Lagrangian ΛA and helicity

The τ -independent field can be found immediately
from Eq. (10). Taking the curl of this equation with
respect to the coordinates (a, b, c), we obtain

∇a × ∂τV a = ∂τ (∇a × V a) = 0, (30)

where ∇a = (∂a, ∂b, ∂c). Hence, one may write as ∇a ×
V a = Ωa(a) [7].

The vector V a is a transformed form of the velocity
v = (Xτ , Yτ , Zτ ) = (u, v, w) into the a-space. This is
seen on the basis of a 1-form V 1 defined by

V 1 = Va da+ Vb db+ Vc dc (31)
= u dx+ v dy + w dz. (32)
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where Va = uxa+ vya+wza, xa = ∂X/∂a, u = Xτ , etc. .
Its differential dV 1 gives a two-form Ω2 = dV 1:

Ω2 = Ωadb ∧ dc+ Ωbdc ∧ da+ Ωcda ∧ db
= ωxdy ∧ dz + ωydz ∧ dx+ ωzdx ∧ dy, (33)

where (Ωa,Ωb,Ωc) = Ωa, and ∇× v = (ωx, ωy, ωz) = ω
is the vorticity. Thus, it is seen that Ωa is the vorticity
transformed to the a-space. The equation (30) is trans-
formed into the τ -derivative of the 2-form Ω2, L∂τ Ω2 = 0
(understood as the Lie derivative).

Next, let us introduce a gauge-potential vector Aa =
(Aa, Ab, Ac) in the a-space, and define its 1-form A1 by
A1 = Aa da + Ab db + Ac dc = Ax dx + Ay dy + Az dz.
Thus, it is proposed that a possible type of Lagrangian is

ΛA = −
∫
M

〈∂τAa,Ωa〉d3a =
∫
M

〈A, EW [ω] 〉d3x,

where EW [ω] ≡ ∂tω + (v · ∇)ω − (ω · ∇)v + (∇ · v)ω.
New results were deduced from this Lagrangian in [3]:

(i) the velocity v includes a new rotational term, (ii) the
vorticity equation is derived from the variation of A:

EW [ω] = ∂tω + (v · ∇)ω − (ω · ∇)v + (∇ · v)ω = 0,

and (iii) we have non-vanishing helicity H , where

H =
∫
V

ω · v d3x =
∫
V

ω · EW [curlA]
ρ

d3x,

B. Uniqueness of transformation

Transformation from the Lagrangian a space to Eu-
lerian x(a) space is determined locally by nine compo-

nents of the matrix ∂xk/∂al. However, in the previous
solution considered in Sec.II C, we had three relations
(11) between v = (Xτ , Yτ , Zτ ) and (Va, Vb, Vc), and an-
other three relations (13) between A = (Xττ , Yττ , Zττ )
and (Aa,Ab,Ac). Remaining three conditions are given
by the equation (33) connecting ω = (ωx, ωy, ωz) and
Ωa(a) = (Ωa,Ωb,Ωc). For example, Ωa is determined by

Ωa = ωx (∂by ∂cz − ∂cy ∂bz) + ωy (∂bz ∂cx− ∂cz ∂bx)
+ ωz (∂bx∂cy − ∂cx∂by). (34)

There are three vectors (velocity, acceleration and vor-
ticity) determined by evolution equations subject to ini-
tial conditions in each space of x and a coordinates.
Transformation relations of the three vectors suffice to
determine the nine matrix elemets ∂xk/∂al locally. Thus,
the transformation between the Lagrangian a space and
Eulerian x(a) space is determined uniquely. [3]

VI. SUMMARY AND DISCUSSION

Following the scenario of the gauge principle of field
theory, it is found that the variational principle of fluid
motions can be reformulated successfully in terms of co-
variant derivative and Lagrangians defined appropriately.
The present variational formulation is self-consistent and
comprehensively describes flows of an ideal fluid.

In the improved formulation taking account of the ro-
tational symmetry with additional equations of (33), the
transformation relations of the three vectors (velocity,
acceleration and vorticity) suffice to determine the nine
matrix elements ∂xk/∂al locally. Thus, the transforma-
tion between the Lagrangian a space and Eulerian x(a)
space is determined uniquely.
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